Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

2024 年全国硕士研究生招生考试试题与答案 (数学一)

数学

本试卷共 4 页, 22 题. 全卷满分 150 分, 考试用时 120 分钟.

注意事项:

  1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上.
  2. 回答选择题时, 用铅笔把答题卡上对应题目的答案标号涂黑, 写在本试卷上无效.
  3. 考试结束后, 将本试卷和答题卡一并交回.
  4. 本试卷由 kmath.cn 自动生成.
得分
阅卷人

一、单选题: 本题共 10 小题, 每小题 5 分, 共 40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.

  1. 已知函数 f(x) = \int_{0}^{x} e^{\cos t} dt , g(x) = \int_{0}^{\sin x} e^{t^2} dt , 则
    1. f(x) 是奇函数, g(x) 是偶函数
    2. f(x) 是偶函数, g(x) 是奇函数
    3. f(x) g(x) 均为奇函数
    4. f(x) g(x) 均为周期函数

[答案]: C [解析]: 【解析】由于 e^{\cos t} 是偶函数, 所以 f(x) = \int_{0}^{x} e^{\cos t} dt 是奇函数, 又 g'(x) = e^{(\sin x)^2} \cos x 是偶函数, 所以 g(x) 是奇函数. 故选 C.

  1. P = P(x, y, z) Q = Q(x, y, z) 均为连续函数, \Sigma 为曲面 Z = \sqrt{1 - x^2 - y^2} ( x \le 0, y \ge 0 ) 的上侧, 则 \iint_{\Sigma} P dydz + Q dzdx =
    1. \iint_{\Sigma} \left(\frac{x}{z}P + \frac{y}{z}Q\right) dxdy
    2. \iint_{\Sigma} \left(-\frac{x}{z}P + \frac{y}{z}Q\right) dxdy
    3. \iint_{\Sigma} \left(\frac{x}{z}P - \frac{y}{z}Q\right) dxdy
    4. \iint_{\Sigma} \left(-\frac{x}{z}P - \frac{y}{z}Q\right) dxdy

[答案]: A [解析]: 【解析】转换投影法, z = \sqrt{1 - x^2 - y^2} , \frac{\partial z}{\partial x} = -\frac{x}{z} , \frac{\partial z}{\partial y} = -\frac{y}{z}

\iint_{\Sigma} P dydz + Q dzdx = \iint_{\Sigma} \left(\frac{x}{z}P + \frac{y}{z}Q\right) dxdy

故选 A.

  1. 已知幂级数 \sum_{n=0}^{\infty} a_n x^n 的和函数为 \ln(2+x) , 则 \sum_{n=0}^{\infty} n a_{2n} =
  1. -\frac{1}{6}
  2. -\frac{1}{3}
  3. \frac{1}{6}
  4. \frac{1}{3}

[答案]: A [解析]: 【解析】方法 1: \ln(2+x) = \ln 2 \left(1 + \frac{1}{2}x\right) = \ln 2 + \ln \left(1 + \frac{1}{2}x\right)

= \ln 2 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\left(\frac{1}{2}x\right)^n}{n}

所以, a_n = \begin{cases} \ln 2, & n=0 \\ (-1)^{n-1} \frac{1}{n 2^n}, & n>0 \end{cases} n>0 , a_{2n} = -\frac{1}{2n \cdot 2^{2n}} , 所以, \sum_{n=0}^{\infty} n a_{2n} = \sum_{n=1}^{\infty} n a_{2n} = \sum_{n=1}^{\infty} n \cdot \left(-\frac{1}{2n \cdot 2^{2n}}\right) = -\sum_{n=1}^{\infty} \frac{1}{2^{2n+1}} = -\frac{\left(\frac{1}{2}\right)^3}{1-\frac{1}{4}} = -\frac{1}{6} 故选 A. 方法 2:

[\ln(2+x)]' = \frac{1}{2+x} = \frac{1}{2\left(1+\frac{x}{2}\right)} = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x}{2}\right)^n

\ln(2+x) = \sum_{n=0}^{\infty} (-1)^n \frac{\left(\frac{1}{2}x\right)^{n+1}}{n+1} + C = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\left(\frac{1}{2}x\right)^n}{n} + C

S(0) = C = \ln(2+0) = \ln 2

\text{所以, } a_n = \begin{cases} \ln 2, & n=0 \\ (-1)^{n-1} \frac{1}{n 2^n}, & n>0 \end{cases}

所以, \sum_{n=0}^{\infty} n a_{2n} = \sum_{n=1}^{\infty} n a_{2n} = \sum_{n=1}^{\infty} n \cdot \left(-\frac{1}{2n \cdot 2^{2n}}\right) = -\sum_{n=1}^{\infty} \frac{1}{2^{2n+1}} = -\frac{\left(\frac{1}{2}\right)^3}{1-\frac{1}{4}} = -\frac{1}{6} 故选 A.

4. 设函数 f(x) 在区间 (-1, 1) 上有定义, 且 \lim_{x \to 0} f(x) = 0 , 则

  1. \lim_{x \to 0} \frac{f(x)}{x} = m 时, f'(0) = m
  2. f'(0) = m 时, \lim_{x \to 0} \frac{f(x)}{x} = m
  3. \lim_{x \to 0} f'(x) = m 时, f'(0) = m
  4. f'(0) = m 时, \lim_{x \to 0} f'(x) = m

[答案]: B [解析]: 【解析】因为 f'(0) = m , 所以 f(x) x=0 处连续, 从而 \lim_{x \to 0} f(x) = f(0) = 0 , 所以

\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = m, \text{ 故选 B.}

对于 A 选项, \lim_{x \to 0} \frac{f(x)}{x} = m , 推不出来 f'(0) = m ; 对于 C 选项, f'(x) x=0 处不一定连续; 对于

D 选项, f'(x) x=0 处极限未必存在.

5. 在空间直角坐标系 O-xyz 中, 三张平面 \pi_i: a_i x + b_i y + c_i z = d_i ( i=1, 2, 3 ) 的位置关系如图所示,

\alpha_i = (a_i, b_i, c_i, d_i) , 若 r \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = m , r \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = n , 则

Diagram showing three planes, pi_1, pi_2, and pi_3, intersecting in a common line. The planes are arranged such that pi_1 and pi_2 intersect along a line, and pi_3 intersects both pi_1 and pi_2 along the same line.
Diagram showing three planes, pi_1, pi_2, and pi_3, intersecting in a common line. The planes are arranged such that pi_1 and pi_2 intersect along a line, and pi_3 intersects both pi_1 and pi_2 along the same line.
  1. m=1, n=2
  2. m=n=2
  3. m=2, n=3
  4. m=n=3

数学试题第 1 页 (共 10 页)

数学试题第 2 页 (共 10 页)