Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

河南省高三模拟考试
数学参考答案(理科)

1. D 依题意可得 m=2 , 则 z_1 \cdot z_2 = (-1+2i)(2+2i) = -6+2i .

2. C 因为 a=2b , b=-3c , 所以 a b 同向, b c 反向, 所以 a c 反向.

3. C 因为 A=\{x|-2 \le x \le 2\} , B=\{y|0 \le y < 2\} , 所以 A \cap B=[0, 2) .

4. D 这五个社团的总人数为 \frac{8}{10\%} = 80 , \frac{80}{2000} = 4\% , A 错误, C 错误. 因为太极拳社团人数的占比为 \frac{12}{8} \times 10\% = 15\% , 所以脱口秀社团人数的占比为 1-10\%-15\%-30\%-25\% = 20\% , B 错误. 从这五个社团中任选一人, 其来自脱口秀社团或舞蹈社团的概率为 25\% + 20\% = 45\% , D 正确.

5. A 依题意可得圆锥的体积 V=1 \times (\frac{2\sqrt{3\pi}}{3})^2 = \frac{4\pi}{3} \text{cm}^3 ,
V=\frac{1}{3}\pi \times 1^2 \times h(\text{cm}^3) (其中 h 为圆锥的高), 则 h=4 cm, 则圆锥的母线长为 \sqrt{1^2+4^2}=\sqrt{17} cm, 故圆锥的侧面积为 \sqrt{17}\pi \text{cm}^2 .

6. B 因为等比数列 \{a_n+1\} 的公比 q=\frac{a_3+1}{a_2+1}=\frac{27}{9}=3 , 所以 a_5+1=(a_2+1)q^3=9 \times 3^3=243 , 即 a_5=242 .

7. A 由题意可知, a<0 , b>0 , c>0 , \frac{b}{c}=\frac{\log_3 2}{\log_6 4}=\frac{\log_3 2}{2\log_6 2}=\frac{\log_2 6}{2\log_2 3}=\log_9 6<1 , 则 c>b , 所以 c>b>a .

8. C 当 x \in [0, \frac{\pi}{12}] 时, 因为 \omega>0 , 所以 \omega x-\frac{\pi}{4} \in [-\frac{\pi}{4}, \frac{\pi}{12}\omega-\frac{\pi}{4}] , 又 y=\sin(\omega x-\frac{\pi}{4}) 在区间 [0, \frac{\pi}{12}] 上不单调, 所以 \frac{\pi}{12}\omega-\frac{\pi}{4}>\frac{\pi}{2} , 即 \omega>9 . 因为直线 x=\frac{\pi}{12} 是曲线 y=\sin(\omega x-\frac{\pi}{4})(\omega>0) 的一条对称轴, 所以 \frac{\pi}{12}\omega-\frac{\pi}{4}=\frac{\pi}{2}+k\pi(k \in \mathbb{Z}) , 即 \omega=9+12k(k \in \mathbb{Z}) , 故 \omega 的最小值为 21.

9. D 因为 f(x-1) 为定义在 \mathbb{R} 上的奇函数, 所以 f(x) 的图象关于点 (-1, 0) 对称,
f(-1)=0 , 又 f(1)=0 , 所以 f(-3)=0 . 依题意可得, 当 -3 < x < -1 x>1 时, f(x)<0 . 所以 f(2^x-5)<0 等价于 -3 < 2^x-5 < -1 2^x-5>1 , 解得 1 < x < 2 x>\log_2 6 .

10. B 如图, 连接 F_1B , F_1A , 则 F_1 , A , C F_1 , B , D 都三点共线.
|F_2B|=x , 则 |F_1B|=x+2a .
\cos \angle F_1AB = \cos(\pi - \angle BAC) = \frac{4}{5} , 得 \tan \angle F_1AB = \frac{3}{4} , 又 AB \perp BD , 则 |AB| = \frac{4}{3}|F_1B| , |F_1A| = \frac{5}{3}|F_1B| , |F_2A| = |AB| - |F_2B| , 因此 |F_1A| - |F_2A| = \frac{4}{3}x + \frac{2}{3}a = 2a , 即 x=a , 则 \tan \angle F_1F_2B = 3 , (2c)^2 = (x+2a)^2 + x^2 = 10a^2 , c^2 = \frac{5}{2}a^2 , 故 e = \frac{\sqrt{10}}{2} .

11. A 易证 AC \perp 平面 BB_1D_1D , DE \subset 平面 BB_1D_1D , 所以恒有 AC \perp DE , 直线 DE 与直线 AC 所成角为 90^\circ , 所以①是真命题. 点 E 到直线 AB 的距离与点 E 到直线 A_1B_1 的距离有关, 所以②是假命题. 因为 B_1D_1 \parallel BD , 所以 B_1D_1 \parallel 平面 A_1BD , 故点 E 到平面 A_1BD 的距离 d 为定值, 则 V_{E-A_1BD} = \frac{1}{3}d \cdot S_{\triangle A_1BD} 为定值, 所以③是真命题. 点 E D_1 处和在 B_1D_1 的中点处时, 三棱锥 E-A_1BD 的外接球半径不同, 故其外接球的体积不是定值, 所以④是假命题.

12. B 不妨设切点为 (x_0, (x_0-1)e^{x_0}) , 因为 f'(x) = xe^x , 所以切线方程为 y-\lambda = x_0e^{x_0}(x-1) , 则

Diagram showing a hyperbola centered at the origin O, with foci F1 and F2 on the x-axis. Points A and B are on the right branch, and points C and D are on the left branch. Lines connect A to B, A to D, and C to D. Below the hyperbola is a 3D diagram of a rectangular prism (cuboid) with vertices labeled A, B, C, D, A1, B1, C1, D1. E is a point inside the prism, connected to A1, B, D, and D1.
Diagram showing a hyperbola centered at the origin O, with foci F1 and F2 on the x-axis. Points A and B are on the right branch, and points C and D are on the left branch. Lines connect A to B, A to D, and C to D. Below the hyperbola is a 3D diagram of a rectangular prism (cuboid) with vertices labeled A, B, C, D, A1, B1, C1, D1. E is a point inside the prism, connected to A1, B, D, and D1.

【高三数学·参考答案 第1页(共5页)理科】

· 22-03-414C ·