Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

(II) 解法1: 由(I)知, \angle A'OC=120^\circ ---------------- 6分

如图建系 O-xyz , B(1, 0, 0) , 设 OC=b , OA'=a , 则 C(0, b, 0) , A'\left(0, -\frac{1}{2}a, \frac{\sqrt{3}}{2}a\right)

\overrightarrow{BC}=(-1, b, 0) ---------------- 8分

平面 A'DB 的法向量为 \vec{n}=(0, \sqrt{3}, 1) ---------------- 10分

\sin 45^\circ = \left| \cos \langle \vec{n}, \overrightarrow{BC} \rangle \right| = \left| \frac{\vec{n} \cdot \overrightarrow{BC}}{|\vec{n}| |\overrightarrow{BC}|} \right| \quad \text{---------------- 11分}

解得 b=\sqrt{2} , BC=\sqrt{3} ---------------- 12分

解法2: 由(I)知, \angle A'OC=120^\circ ---------------- 6分

C CH \perp A'O , BD \perp 平面 A'OC ,

\therefore BD \perp CH , CH \perp A'O , CH \perp 平面 A'BD

\angle CBH 就是 BC 与平面 \triangle A'BD 所成角 ---------------- 9分

CO=x , 则 CH=\frac{\sqrt{3}}{2}x , CB=\sqrt{2}CH=\frac{\sqrt{6}}{2}x ,

CB=\sqrt{OB^2+OC^2}=\sqrt{1+x^2} , 则 \frac{\sqrt{6}}{2}x=\sqrt{1+x^2}

解得 x=\sqrt{2} , BC=\sqrt{3} ---------------- 12分

Diagram showing a geometric configuration involving points A', B, C, O, D, and H. A' is above the base triangle BOC. D is on A'O. H is on BC. Lines A'D, BD, CH, and A'H are drawn, suggesting a spatial relationship.
Diagram showing a geometric configuration involving points A', B, C, O, D, and H. A' is above the base triangle BOC. D is on A'O. H is on BC. Lines A'D, BD, CH, and A'H are drawn, suggesting a spatial relationship.

21. 解:

(I) 联立方程组 \begin{cases} y=kx+1 \\ x^2-4y^2=4 \end{cases} y 得: (1-4k^2)x^2-8kx-8=0 ---------------- 2分

\begin{cases} 1-4k^2 \neq 0 \\ \Delta=32-64k^2>0 \end{cases} 解得 -\frac{\sqrt{2}}{2} < k < \frac{\sqrt{2}}{2} k \neq \pm \frac{1}{2} ---------------- 5分

(漏 k \neq \pm \frac{1}{2} 得 4分)

(II) 设 M , N 坐标分别为 (x_1, y_1) , (x_2, y_2) , A(-2, 0) , 由(I)知

\begin{cases} x_1+x_2=\frac{8k}{1-4k^2} \\ x_1 \cdot x_2=\frac{-8}{1-4k^2} \end{cases} \quad \text{---------------- 6分}

直线 MA 的方程为 y=\frac{y_1}{x_1+2}(x+2) , 令 x=0 可得点 P 坐标为 \left(0, \frac{2y_1}{x_1+2}\right)

同理点 Q 坐标为 \left(0, \frac{2y_2}{x_2+2}\right) ---------------- 8分

|PQ|=1 \Rightarrow \left| \frac{y_1}{x_1+2} - \frac{y_2}{x_2+2} \right| = \frac{1}{2} \Rightarrow \left| \frac{(x_1-x_2)(1-2k)}{(x_1+2)(x_2+2)} \right| = \frac{1}{2}

\left| 4\sqrt{2}\sqrt{1-2k^2}(1-2k) \right| = 2(2k-1)^2 \quad \text{---------------- 10分}

浙江省A9协作体暑假返校联考 高三数学参考答案 第4页 共6页