Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

浙江大学 2015-2016 学年 秋冬 学期

研究生《计算理论》课程期终考试试卷

考试形式: 闭卷, 考试时间: 2016 年 1 月 15 日, 所需时间: 120 分钟

学号: __________ 姓名: __________ 专业: __________ 任课教师: 金小刚

题序 1 2 3 4 5 6 7 总分
得分
评卷人

Zhejiang University

Theory of Computation, Fall-Winter 2015

Final Exam

1. (20%) Determine whether the following statements are true or false. If it is true write a \circ otherwise a \times in the bracket before the statement.

(a) ( ) Let L be any regular language. Then the number of equivalence classes respect to language L (i.e. x \approx_L y , if for all z \in \Sigma^* , xz \in L iff yz \in L ) is finite.

(b) ( ) The language \{a^n b^n w | w \in \{a, b\}^*, n \in N, \text{ and } |w| = 2n\} is context-free.

(c) ( ) The language \{\text{"M"} \text{"w"} | M \text{ accepts } w \text{ in less than } 2016 \text{ steps} \} is not recursive.

(d) ( ) The language \{\text{"M"} | M \text{ is a TM and } L(M) \text{ is Context-free but } L(M) \text{ is not regular}\} is not recursive.

(e) ( ) The language \{\text{"M}_1\text{" } \text{"M}_2\text{" } | M_1 \text{ and } M_2 \text{ are TMs, and } M_1 \text{ halts on } e \text{ but } M_2 \text{ doesn't halt on } e\} is recursively enumerable, but not recursive.

(f) ( ) The set of all primitive recursive functions is a proper subset of the set of all \mu -recursive functions.

(g) ( ) Let A and B be two disjoint recursively enumerable languages. If \overline{A \cup B} is also be recursively enumerable, then it is possible that neither A nor B is decidable.

(h) ( ) Let H_{10} = \{\text{"M"} | M \text{ is a TM and } 10 \in L(M)\} and \tau_1 and \tau_2 are recursive functions. If H_{10} \le_{\tau_1} L and \overline{H_{10}} \le_{\tau_2} L , then L is recursive enumerable but not recursive.

(i) ( ) Suppose \mathbf{SAT} \le_P L and L \in \mathbf{P} . Then \mathbf{P} = \mathbf{NP} .

(j) ( ) Let H = \{\text{"M"} \text{"w"} | \text{TM } M \text{ halts on input string } w\} , then H is \mathbf{NP} -complete.