Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

236

9 Calculus and Number Theory

Proof Firstly, from (9.14) we get

\begin{aligned} \left| P_n - \sum_{k=1}^{n} \frac{\mu(k)}{k^2} \right| &= \left| \sum_{k=1}^{n} \mu(k) \left( \frac{1}{n^2} \left\lfloor \frac{n}{k} \right\rfloor^2 - \frac{1}{k^2} \right) \right| \\ &\le \sum_{k=1}^{n} \left| \frac{1}{k^2} - \frac{1}{n^2} \left\lfloor \frac{n}{k} \right\rfloor^2 \right|. \quad (9.15) \end{aligned}

In order to estimate the last sum above, we claim that, given natural numbers n and k such that 1 \le k \le n , we have

\left| \frac{1}{k^2} - \frac{1}{n^2} \left\lfloor \frac{n}{k} \right\rfloor^2 \right| < \frac{2}{nk} - \frac{1}{n^2}.

Indeed,

\begin{aligned} \frac{n}{k} - 1 < \left\lfloor \frac{n}{k} \right\rfloor \le \frac{n}{k} & \Rightarrow \frac{n^2}{k^2} - \frac{2n}{k} + 1 < \left\lfloor \frac{n}{k} \right\rfloor^2 \le \frac{n^2}{k^2} \\ & \Rightarrow \frac{1}{k^2} - \frac{2}{kn} + \frac{1}{n^2} < \frac{1}{n^2} \left\lfloor \frac{n}{k} \right\rfloor^2 \le \frac{1}{k^2} \\ & \Rightarrow 0 \le \frac{1}{k^2} - \frac{1}{n^2} \left\lfloor \frac{n}{k} \right\rfloor^2 < \frac{2}{kn} - \frac{1}{n^2}, \end{aligned}

as wished.

Back to (9.15), we obtain from the above estimates that

\left| P_n - \sum_{k=1}^{n} \frac{\mu(k)}{k^2} \right| < \sum_{k=1}^{n} \left( \frac{2}{nk} - \frac{1}{n^2} \right) = \frac{2}{n} \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{n}.

Now, from L'Hôpital's rule we get

\frac{2}{n} \sum_{k=1}^{n} \frac{1}{k} < \frac{2}{n} \left( 1 + \int_{1}^{n} \frac{1}{t} dt \right) = \frac{2}{n} (\log n + 1) \to 0

as n \to +\infty . Hence,

\lim_{n \to +\infty} \left( \frac{2}{n} \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{n} \right) = 0,

and our previous estimates assure that