Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

20

經貿組(7-7)

國立高雄大學九十五學年度研究所碩士班招生考試試題

科目:統計學

系所:經濟管理研究所全球經貿組

可使用計算機

考試時間:100分鐘

本科原始成績:滿分100分

4. Let X_1, X_2, \dots, X_n be independent, uniformly distributed random variables on the interval [0, \theta] . (20%)

(a) Find the maximum likelihood estimator \hat{\theta} of \theta .

(b) Is \hat{\theta} an unbiased estimator of \theta ?

(c) Is \hat{\theta} a consistent estimator of \theta ?

5. For a given experiment, S denotes the sample space and A_1, A_2, A_3, \dots represent possible events. Assume that a number P(A) , called the probability of A , satisfies the following three axioms:

(Axiom 1) P(A) \ge 0 for every A ;

(Axiom 2) P(S) = 1 ;

(Axiom 3) P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i) if A_i \cap A_j = \emptyset for i \ne j .

Consider the experiment of rolling a fair die, where the experimental outcome is defined as the number of dots appearing on the upward face of the die. Show that the probability that one dot appears on the upward face of the die is 1/6 .

(15%)

Area in Upper Tail

t Distribution

Degrees of Freedom Upper 5% point Upper 2.5% point
6 2.447 3.143
7 2.365 2.998
8 2.306 2.896
9 2.262 2.821
10 2.228 2.821
\vdots \vdots \vdots
\infty 1.645 1.96

第 2 頁,共 2 頁