Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

高三数学试卷参考答案(文科)

  1. B 因为 A=\{x|-2 \le x \le 3\} , B=\{x|1 < x < 5\} , 所以 A \cap B=\{x|1 < x \le 3\} .
  2. D 由题可知 z_1=2i , z_2=-1+i , 则 z_1 z_2=2i(-1+i)=-2-2i , 复数 z_1 z_2 的虚部为 -2 .
  3. C 作出不等式组表示的可行域(图略), 由图可知, 可行域的面积为 \frac{1}{2} \times 2 \times 4=4 .
  4. C 因为 |F_1 F_2|=6 , 所以当 0 < ||PF_1| - |PF_2|| < 6 时, 动点 P 的轨迹为双曲线.
  5. C 因为在 x=0 处左、右两边的导数值均为负数, 所以 0 不是极值点, 故由图可知 f(x) 只有 2 个极值点.
  6. D 由题意可知 g(x)=3\cos[2(x+\frac{\pi}{3})]=3\cos(2x+\frac{2\pi}{3}) , 最小正周期 T=\frac{2\pi}{2}=\pi ; 令 2x+\frac{2\pi}{3}=\frac{\pi}{2}+k\pi, k \in \mathbb{Z}

Z. 得其图象的对称中心为 (\frac{k\pi}{2}-\frac{\pi}{12}, 0) (k \in \mathbb{Z}) ; 当 x=\frac{k\pi}{2}-\frac{\pi}{3} (k \in \mathbb{Z}) 时, g(x) 取得最大值或最小值.

Diagram of a cube. Vertices are labeled D1, P, C1, Q, B1, A1, D, C, A, B. A cross-section A1BQP is shown, where P is on C1C and Q is on D1C1.
Diagram of a cube. Vertices are labeled D1, P, C1, Q, B1, A1, D, C, A, B. A cross-section A1BQP is shown, where P is on C1C and Q is on D1C1.
  1. B 如图, 过点 A_1, B, P 的平面截正方体所得的截面为 A_1BQP , 所以侧视图为 B.
  1. A f(x) 是奇函数, 故 f(-2)=-f(2)=-1 . 又 f(x) 是增函数, -1 \le f(x-1) \le 1 , 所以 f(-2) \le f(x-1) \le f(2) , 则 -2 \le x-1 \le 2 , 解得 -1 \le x \le 3 .
  1. C 依题意得输出的 S=(x^2-1)^2-1=0 , 解得 x=0 x=\pm\sqrt{2} , 故输入的实数 x 的取值共有 3 个.
  1. D 由题意得, \angle A=30^\circ , \angle CBD=45^\circ , \therefore \angle ACB=15^\circ , 又 AB=42 , 根据正弦定理得 \frac{42}{\sin 15^\circ}=\frac{BC}{\sin 30^\circ} , BC=\frac{84}{\sqrt{6}-\sqrt{2}} . \therefore \angle CBD=45^\circ , \therefore CD=\frac{\sqrt{2}}{2}BC=\frac{42}{\sqrt{3}-1} \approx 57 (米).
  1. C 因为 CD \perp 平面 ABC , 所以 CD \perp AC , 又 \triangle ACD 是等腰三角形, 所以 CD=AC .

因为 \triangle ABC 是正三角形, 所以 AB=BC=AC=CD=2\sqrt{3} . 设 E \triangle ABC 外接圆的圆心,

CE=2\sqrt{3} \times \frac{\sqrt{3}}{2} \times \frac{2}{3}=2 , OE=\frac{1}{2}CD=\sqrt{3} , 所以 OC=\sqrt{OE^2+CE^2}=\sqrt{7} ,

故球 O 的体积为 \frac{4}{3}\pi \times (\sqrt{7})^3=\frac{28\sqrt{7}}{3}\pi .

Diagram of a pyramid D-ABC. O is the center of the circumscribed sphere. E is the circumcenter of triangle ABC.
Diagram of a pyramid D-ABC. O is the center of the circumscribed sphere. E is the circumcenter of triangle ABC.
  1. A 以 A 为坐标原点, AB, AC 所在直线分别为 x, y 轴建立平面直角坐标系(图略), 则

A(0,0), B(3m,0), C(0,2m) , \vec{AM}=\frac{\vec{AB}}{|\vec{AB}|}-\frac{m\vec{AC}}{|\vec{AC}|}=(1,-m) , 所以 M(1,-m) , \vec{MB}=(3m-1,m) , \vec{MC}=(-1,3m) , 则 \vec{MB} \cdot \vec{MC}=3m^2-3m+1=3(m-\frac{1}{2})^2+\frac{1}{4} \ge \frac{1}{4} .

  1. 3 \log_2 7 \cdot \log_7 8 = \log_2 8 = 3 .
  1. \frac{36}{77} 因为 \tan(\alpha+\beta)=4 , \tan \beta=2 , 所以 \tan \alpha=\tan[(\alpha+\beta)-\beta]=\frac{4-2}{1+4 \times 2}=\frac{2}{9} , \tan 2\alpha=\frac{2\tan \alpha}{1-\tan^2 \alpha}=\frac{\frac{4}{9}}{1-\frac{4}{81}}=\frac{36}{77} .
  1. 72.5 这 100 名同学得分的中位数的估计值为 70+\frac{0.1}{0.04}=72.5 .
  1. -1; 1 如图, 由题可知, 圆 C 的圆心坐标为 (\sqrt{2}, 2\sqrt{2}) , 半径为 1 . 设椭圆 E 的左焦点为 F_1 , 则 |PQ|-|PF|=|PQ|+|PF_1|-4=|PC|+|PF_1|-5 \ge |CF_1|-5=-1 , 当 F_1 ,

P, Q, C 四点共线时, 等号成立, 此时直线 PQ 的斜率为 \frac{2\sqrt{2}-0}{\sqrt{2}-(-\sqrt{2})}=1 .

Diagram showing an ellipse E centered at the origin O, with foci F1 (left) and F (right) on the x-axis. A circle C is shown in the first quadrant, centered at C. P is a point on the ellipse E. Q is a point on the circle C. The line segment PQ is shown.
Diagram showing an ellipse E centered at the origin O, with foci F1 (left) and F (right) on the x-axis. A circle C is shown in the first quadrant, centered at C. P is a point on the ellipse E. Q is a point on the circle C. The line segment PQ is shown.

【\rightarrow 高三数学\cdot 参考答案 第1页(共4页)文科\leftarrow】