Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

专题 41 有关圆幂定理型压轴题

【方法点拨】

1. 相交弦定理: 如下左图, 圆 O 的两条弦 AB PC 相交于圆内一点 P , 则 PA \cdot PB = PC \cdot PD .

2. 切割线定理: 如下右图, PT 为圆 O 的切线, PAB PCD 为割线, 则 PT^2 = PA \cdot PB ( ) ;

3. 割线定理: 如下右图, PAB PCD 为圆 O 的割线, 则 PA \cdot PB = PC \cdot PD .

说明: 上述三个定理可以统一为 PA \cdot PB = PO^2 - R^2 (其中 R 是半径), 统称为圆幂定理.

Diagram illustrating the Power of a Point theorem. The left diagram shows a circle centered at O with two chords AB and CD intersecting at P inside the circle. The right diagram shows a circle centered at O with a point P outside the circle, a tangent PT at T, and two secants PAB and PCD.
Diagram illustrating the Power of a Point theorem. The left diagram shows a circle centered at O with two chords AB and CD intersecting at P inside the circle. The right diagram shows a circle centered at O with a point P outside the circle, a tangent PT at T, and two secants PAB and PCD.

【典型题示例】

例 1 如图, 在平面直角坐标系 xOy 中, 已知点 A(-1,0) , 点 P 是圆 O: x^2 + y^2 = 4 上的任意一点, 过点 B(1,0) 作直线 BT 垂直于 AP , 垂足为 T , 则 2PA+3PT 的最小值是________.

Diagram for Example 1. A circle centered at O (origin) with radius 2. Points A(-1, 0) and B(1, 0) are on the x-axis. P is a point on the circle. T is the foot of the perpendicular from B to the line AP, forming a right angle at T.
Diagram for Example 1. A circle centered at O (origin) with radius 2. Points A(-1, 0) and B(1, 0) are on the x-axis. P is a point on the circle. T is the foot of the perpendicular from B to the line AP, forming a right angle at T.

【答案】: 6\sqrt{2}

【分析】从题中已知寻求 PA PT 间的关系是突破口, 也是难点, 思路一是从中线长定理入手, 二是直接使用圆幂定理.

【解法一】由中线长公式可得 PO = \frac{1}{2}\sqrt{2(PA^2 + PB^2) - AB^2} , 则 PA^2 + PB^2 = 10

\cos P = \frac{PA^2 + PB^2 - AB^2}{2PA \cdot PB}, \text{ 则 } \cos P = \frac{3}{PA \cdot PB}