Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

2021年秋期高中三年级期终质量评估

数学试题(文)

注意事项:

1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.

2. 答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.

3. 选择题答案使用2B铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.

4. 请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.

5. 保持卷面清洁,不折叠、不破损.

第Ⅰ卷 选择题(共60分)

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1. 复数 z = \frac{2i}{1+i} , 则 z 的模为

A. 1-i B. 1+i C. \sqrt{2} D. 2

2. 已知集合 A = \{(x, y) | x^2 + y^2 = 1\} , B = \{y | y = x\} , 则 A \cap B 中元素的个数为

A. 3 B. 2 C. 1 D. 0

3. 设有下面四个命题:

p_1: \exists x_0 \in (0, +\infty), x_0 + \frac{1}{x_0} > 3;

p_2: x \in \mathbf{R} , “ x > 1 ”是“ x > 2 ”的充分不必要条件;

p_3 : 命题“若 x - \sqrt{3} 是有理数, 则 x 是无理数”的逆否命题;

p_4 : 若“ p \lor q ”是真命题, 则 p 一定是真命题.

其中为真命题的是

A. p_1, p_2 B. p_2, p_3 C. p_2, p_4 D. p_1, p_3

4. 向量 |\mathbf{a}| = 2 , |\mathbf{b}| = 1 , \mathbf{a}, \mathbf{b} 的夹角为 120^\circ , 则 \mathbf{a} \cdot (\mathbf{a} - \mathbf{b}) =

A. 5 B. 6 C. 7 D. 8

5. 函数 f(x) = \ln(x - \frac{1}{x}) 的图象是

Graph A: Shows two branches. The right branch for x>1 starts near x=1 with y approaching negative infinity and increases towards y=0 as x approaches infinity. The left branch for x in (-1, 0) starts near x=-1 with y approaching negative infinity and increases towards y=0 as x approaches 0 from the left.

A

Graph A: Shows two branches. The right branch for x>1 starts near x=1 with y approaching negative infinity and increases towards y=0 as x approaches infinity. The left branch for x in (-1, 0) starts near x=-1 with y approaching negative infinity and increases towards y=0 as x approaches 0 from the left.
Graph B: Shows two branches. The right branch for x>1 starts near x=1 with y approaching negative infinity and increases towards positive infinity as x approaches infinity. The left branch for x in (-1, 0) starts near x=-1 with y approaching negative infinity and increases towards positive infinity as x approaches 0 from the left.

B

Graph B: Shows two branches. The right branch for x>1 starts near x=1 with y approaching negative infinity and increases towards positive infinity as x approaches infinity. The left branch for x in (-1, 0) starts near x=-1 with y approaching negative infinity and increases towards positive infinity as x approaches 0 from the left.
Graph C: Shows two branches. The right branch for x>1 starts near x=1 with y approaching positive infinity and decreases towards y=0 as x approaches infinity. The left branch for x in (-1, 0) starts near x=-1 with y approaching positive infinity and decreases towards y=0 as x approaches 0 from the left.

C

Graph C: Shows two branches. The right branch for x>1 starts near x=1 with y approaching positive infinity and decreases towards y=0 as x approaches infinity. The left branch for x in (-1, 0) starts near x=-1 with y approaching positive infinity and decreases towards y=0 as x approaches 0 from the left.
Graph D: Shows two branches. The right branch for x>1 starts near x=1 with y approaching positive infinity and decreases towards y=0 as x approaches infinity. The left branch for x in (-1, 0) starts near x=-1 with y approaching positive infinity and decreases towards y=0 as x approaches 0 from the left.

D

Graph D: Shows two branches. The right branch for x>1 starts near x=1 with y approaching positive infinity and decreases towards y=0 as x approaches infinity. The left branch for x in (-1, 0) starts near x=-1 with y approaching positive infinity and decreases towards y=0 as x approaches 0 from the left.

6. 正项数列 \{a_n\} 的前 n 项和为 S_n , \forall n \in \mathbf{N}^* , 都有 4S_n = a_n^2 + 2a_n , 则数列 \{(-1)^n a_n\} 的前 2022 项的和等于

A. -2021 B. 2021 C. -2022 D. 2022

7. 如图,某三棱锥的三视图均为直角三角形.若该三棱锥的顶点都在同一个球面上,则该球的表面积为

A. 25\pi B. 50\pi C. \frac{125}{3}\pi D. \frac{25}{2}\pi

Three views of a triangular pyramid (tetrahedron). The main view (front view) is a right triangle with legs 5 and 4. The side view is a right triangle with legs 3 and 4. The top view is a right triangle with legs 5 and 3.
Three views of a triangular pyramid (tetrahedron). The main view (front view) is a right triangle with legs 5 and 4. The side view is a right triangle with legs 3 and 4. The top view is a right triangle with legs 5 and 3.

8. 战国时期,齐王与臣子田忌各有上、中、下三匹马.有一天,齐主要与田忌赛马,双方约定:(1)从各自上、中、下三等级马中各出一匹马;(2)每匹马参加且只参加一次比赛;(3)三场比赛后,以获胜场次多者为最终胜者.已知高等级马一定强于低等级马,而在同等级马中,都是齐王的马强,则田忌赢得比赛的概率为

A. \frac{1}{2} B. \frac{1}{3} C. \frac{1}{4} D. \frac{1}{6}

9. 设 F 为双曲线 C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0) 的右焦点, O 为坐标原点,以 OF 为直径的圆与圆 x^2 + y^2 = a^2 交于 P, Q 两点.若 |PQ| = |OF| , 则 C 的离心率为

A. \sqrt{2} B. \sqrt{3} C. 2 D. \sqrt{5}

10. \{b_n\} 为正项等比数列, b_1 = 1 . 等差数列 \{a_n\} 的首项 a_1 = 2 , 且有 a_2 = b_3 , a_4 = b_4 . 记 c_n = \frac{a_n}{b_n} , 数列 \{c_n\} 的前 n 项和为 S_n . \forall n \in \mathbf{N}^* , k \le S_n 恒成立, 则整数 k 的最大值为

A. 4 B. 3 C. 2 D. 1

11. 已知 f(x) = 2\sin \frac{x}{2} \cos \frac{x}{2} + 2\sqrt{3} \cos^2 \frac{x}{2} - \sqrt{3} , 若 |f(x) - m| \le 3 对任意 x \in [-\frac{5\pi}{6}, \frac{\pi}{6}] 恒成立, 则实数 m 的取值范围为

A. [-1, 1] B. [-\frac{1}{2}, \frac{1}{2}] C. [0, \frac{1}{2}] D. [0, 1]

12. 如果直线 l 与两条曲线都相切, 则称 l 为这两条曲线的公切线. 如果曲线 C_1: y = \ln x 和曲线 C_2: y = \frac{x-a}{x} (x > 0) 有且仅有两条公切线, 那么实数 a 的取值范围是

A. (-\infty, 0) B. (0, 1) C. (1, e) D. (e, +\infty)

第Ⅱ卷 非选择题(共90分)

二、填空题(本大题共4小题,每小题5分,共20分)

13. 已知实数 x, y 满足 x^2 + y^2 = 4 , 则 \frac{y+4}{x+2} 的最小值为______.

14. 给出下列四种说法: ①将一组数据中的每个数都加上或减去同一个常数后,均值与方差都不变; ②在一组样本数据 (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) (n \ge 2, x_1, x_2, \dots, x_n 不全相等)的散点图中,若所有样本点 (x_i, y_i) (i=1, 2, \dots, n) 都在直线 y = -\frac{1}{2}x + 1 上,则这组样本数据的线性相关系数为 -\frac{1}{2} ; ③回归直线 y = bx + a 必经过点 (\bar{x}, \bar{y}) ; ④在吸烟与患肺病这两个分类变量的计算中,由独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说若有100人吸烟,那么其中有99人患肺病.其中错误结论的编号是______.

高三数学(文) 第1页(共4页)

高三数学(文) 第2页(共4页)