Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

20220607 项目第一次模拟测试卷理科数学参考答案及评分标准

一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 C C D B A D B B D B B D

二、填空题:本大题共4小题,每小题5分,满分20分。

13. x^2 - \frac{y^2}{3} = 1

14. \frac{7}{5}

15. \frac{8}{15}

16. 674

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17题-21题为必考题,每个试题考生都必须作答。第22题、23题为选考题,考生根据要求作答。

17. 【解析】(1) 因为点A运动的路程为 \frac{2\pi}{3} ,所以 \angle A Ox = \frac{2\pi}{3} ,………………2分

因为 r_1 = 1, r_2 = 2 ,所以 \angle B Ox = \frac{\pi}{3} ,则 \angle AOB = \frac{\pi}{3} ,………………4分

由余弦定理知 AB^2 = OA^2 + OB^2 - 2OA \cdot OB \cdot \cos \angle AOB
AB^2 = 1 + 4 - 2 \times 1 \times 2 \times \frac{1}{2} = 3 ,所以 |AB| = \sqrt{3} 。………………6分

(2) 设 \angle B Ox = \theta ,则 \angle A Ox = 2\theta
所以 A(\cos 2\theta, \sin 2\theta) B(2\cos \theta, 2\sin \theta) ,………………8分

x_1 + y_2 = \cos 2\theta + 2\sin \theta = -2\sin^2 \theta + 2\sin \theta + 1 = -2(\sin \theta - \frac{1}{2})^2 + \frac{3}{2} ,………………10分

所以当 \sin \theta = \frac{1}{2} 时, x_1 + y_2 取得最大值 \frac{3}{2}

18. 【解析】(1) 连接 BD EC 于点 F
由题意知, PD \perp 平面 ABCD ,所以 PD \perp EC
又因为 EC \perp PB PD \cap PE = P
所以 EC \perp 平面 PBD ,则 EC \perp BD ,………………2分

因为 PD = AB = 2BC = 2 E 为斜边 AB 的中点,
所以 BE = BC = 1 ,则 \angle EBD = \angle CBD ,………………4分
因为 CD \parallel AB ,所以 \angle EBD = \angle CDB
\angle CDB = \angle CBD ,所以 CD = BC = 1 ;………………6分

(2) 连接 AD ,因为 AB = 2, BC = 1 AB 为斜边,
所以 \angle ABC = 60^\circ ,因为 DC = BC = 1
所以 AD = 1 \angle DAB = 60^\circ ,取 AE 的中点为 M
DM x 轴, DC y 轴, DP z 轴建立空间直角坐标系,

E(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0) C(0, 1, 0) P(0, 0, 2)

则平面 PDC 的法向量为 \vec{n}_1 = (1, 0, 0) ,………………8分

………………12分

Diagram for Question 18, showing a pyramid P-ABCD. PD is perpendicular to the base ABCD. E is the midpoint of AB. F is the intersection of BD and EC. A second diagram illustrates the setup of a spatial rectangular coordinate system with origin D, where DP is the z-axis, DC is the y-axis, and DM is the x-axis. M is the midpoint of AE.
Diagram for Question 18, showing a pyramid P-ABCD. PD is perpendicular to the base ABCD. E is the midpoint of AB. F is the intersection of BD and EC. A second diagram illustrates the setup of a spatial rectangular coordinate system with origin D, where DP is the z-axis, DC is the y-axis, and DM is the x-axis. M is the midpoint of AE.

— 高三理科数学(模拟一)答案第1页—