Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

[答案]:C [解析]: 解: 1 亿 = 10^4 \times 10^4 = 10^8 , 1 = 10^4 \times 10^4 \times 10^8 = 10^{4+4+8} = 10^{16} , 故选: C.

9. 如图, 在平面直角坐标系中, 边长为 2 的正六边形 ABCDEF 的中心与原点 O 重合, AB 平行于 x 轴, 交 y 轴于点 P , 将 \triangle OAP 绕点 O 顺时针旋转, 每次旋转 90^\circ , 则第 2022 次旋转结束时, 点 A 的坐标为

Diagram showing a regular hexagon ABCDEF centered at the origin O in a coordinate system. AB is parallel to the x-axis. P is the intersection of AB and the y-axis. Triangle OAP is shaded.
Diagram showing a regular hexagon ABCDEF centered at the origin O in a coordinate system. AB is parallel to the x-axis. P is the intersection of AB and the y-axis. Triangle OAP is shaded.

A. (\sqrt{3}, -1) B. (-1, -\sqrt{3}) C. (-\sqrt{3}, -1) D. (1, \sqrt{3})

[答案]:B [解析]: 解: \because 边长为 2 的正六边形 ABCDEF 的中心与原点 O 重合, \therefore OA = AB = 2 , \angle BAO = 60^\circ , \therefore AB 平行于 x 轴, \therefore \angle APO = 90^\circ , \therefore \angle AOP = 30^\circ , \therefore AP = 1 , OP = \sqrt{3} , \therefore A(1, \sqrt{3}) , \therefore \triangle OAP 绕点 O 顺时针旋转, 每次旋转 90^\circ , 可知点 A_2 D 重合,

Diagram showing the rotation of triangle OAP around the origin O. A1, A2, A3 are shown as intermediate positions of point A. A2 is labeled D.
Diagram showing the rotation of triangle OAP around the origin O. A1, A2, A3 are shown as intermediate positions of point A. A2 is labeled D.

360^\circ \div 90^\circ = 4 可知, 每 4 次为一个循环,

\therefore 2022 \div 4 = 505 \cdots 2,

\therefore A_{2022} 与点 A_2 重合, \therefore A_2 与点 A 关于原点 O 对称, \therefore A_2(-1, -\sqrt{3}) , \therefore 2022 次旋转结束时, 点 A 的坐标为 (-1, -\sqrt{3}) , 故选: B.

10. 呼气式酒精测试仪中装有酒精气体传感器, 可用于检测驾驶员是否酒后驾车, 酒精气体传感器是一种气敏电阻 (图 1 中的 R_1 ), R_1 的阻值随呼气酒精浓度 K 的变化而变化 (如图 2), 血液酒精浓度 M 与呼气酒精浓度 K 的关系见图 3. 下列说法不正确的是

Diagram 1: Circuit diagram showing a power source, switch S, resistor R1, and an ammeter A in series.
Diagram 1: Circuit diagram showing a power source, switch S, resistor R1, and an ammeter A in series.

图1

Diagram 2: Graph showing the relationship between R1 (in Ohms) and K (in 10^-3 mg/100mL). R1 decreases as K increases.
Diagram 2: Graph showing the relationship between R1 (in Ohms) and K (in 10^-3 mg/100mL). R1 decreases as K increases.

图2

Diagram 3: Information window showing the relationship M = 2200 * K * 10^-3 mg/100mL, defining non-drinking, drinking, and drunk driving thresholds.
Diagram 3: Information window showing the relationship M = 2200 * K * 10^-3 mg/100mL, defining non-drinking, drinking, and drunk driving thresholds.

图3

A. 呼气酒精浓度 K 越大, R_1 的阻值越小 B. 当 K = 0 时, R_1 的阻值为 100
C. 当 K = 10 时, 该驾驶员为非酒驾状态 D. 当 R_1 = 20 时, 该驾驶员为醉驾状态

[答案]:C [解析]: 解: 由图 2 可知, 呼气酒精浓度 K 越大, R_1 的阻值越小, 故 A 正确, 不符合题意. 由图 2 知, K = 0 时, R_1 的阻值为 100 , 故 B 正确, 不符合题意; 由图 3 知, 当 K = 10 时, M = 2200 \times 10 \times 10^{-3} = 22 ( \text{mg}/100 \text{ mL} ), \therefore K = 10 时, 该驾驶员为酒驾状态, 故 C 不正确, 符合题意;

由图 2 知, 当 R_1 = 20 时, K = 40 ,

\therefore M = 2200 \times 40 \times 10^{-3} = 88 (\text{mg}/100 \text{ mL})

\therefore 该驾驶员为醉驾状态, 故 D 正确, 不符合题意; 故选: C.

得分
阅卷人

二、填空题: 本题共 5 小题, 每小题 5 分.

11. 请写出一个 y x 的增大而增大的一次函数的表达式:

[答案]: 解: 例如: y = x , 或 y = x + 2 等, 答案不唯一. [解析]:

12. 不等式组 \begin{cases} x-3 \le 0 \\ \frac{x}{2} > 1 \end{cases} 的解集为

[答案]: 解: \begin{cases} x-3 \le 0 \\ \frac{x}{2} > 1 \end{cases} (2), 解不等式 (1), 得: x \le 3 , 解不等式 (2), 得: x > 2 , \therefore 该不等式组的解集是

2 < x \le 3 , 故答案为: 2 < x \le 3 . [解析]:

13. 为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动, 某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲, 则恰好选中甲和丙的概率为

[答案]: \frac{1}{6} . [解析]: 共有 12 种可能的结朱, 其中恰好选中甲和丙的结果有 2 种, \therefore 恰好选中甲和丙的概率为 \frac{2}{12} = \frac{1}{6} , 故答案为: \frac{1}{6} .

14. 如图, 将扇形 AOB 沿 OB 方向平移, 使点 O 移到 OB 的中点 O' 处, 得到扇形 A'O'B' . 若 \angle O = 90^\circ , OA = 2 , 则阴影部分的面积为

Diagram showing sector AOB with center O and radius OA=2. Angle AOB is 90 degrees. The sector is translated along OB to O'B', where O' is the midpoint of OB. The resulting sector A'O'B' is shown. The shaded region is the area of sector AOB minus the area of sector A'O'B'.
Diagram showing sector AOB with center O and radius OA=2. Angle AOB is 90 degrees. The sector is translated along OB to O'B', where O' is the midpoint of OB. The resulting sector A'O'B' is shown. The shaded region is the area of sector AOB minus the area of sector A'O'B'.

[答案]: \frac{\pi}{3} + \frac{\sqrt{3}}{2} . [解析]: 解: 如图, 设 O'A' AB 于点 T , 连接 OT .

Diagram showing the construction for the area calculation. O is the center of the original sector AOB. O' is the midpoint of OB. A' is the image of A after translation. T is the intersection of O'A' and AB. OT is drawn.
Diagram showing the construction for the area calculation. O is the center of the original sector AOB. O' is the midpoint of OB. A' is the image of A after translation. T is the intersection of O'A' and AB. OT is drawn.

\therefore OT = OB , OO' = O'B' , \therefore OT = 2OO' , \therefore \angle OO'T = 90^\circ , \therefore \angle O'TO = 30^\circ , \angle TOO' = 60^\circ , = \frac{90 \cdot \pi \cdot 2^2}{360} - \left( \frac{60 \cdot \pi \cdot 2^2}{360} - \frac{1}{2} \times 1 \times \sqrt{3} \right) = \frac{\pi}{3} + \frac{\sqrt{3}}{2} . 故答案为: \frac{\pi}{3} + \frac{\sqrt{3}}{2} .

数学试题第 3 页 (共 12 页)

数学试题第 4 页 (共 12 页)