Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

初中必刷题 数学九年级下册 RJ

Diagram showing a geometric figure on a grid, likely related to coordinate geometry or similarity.
Diagram showing a geometric figure on a grid, likely related to coordinate geometry or similarity.

方法点拨

由“A”型或者“X”型得到最基本的相似三角形。

刷素养

7.【解】(1) 设 A(x, y) , 则由题意可得 \frac{y}{x} = \frac{3}{2} . ①

AO = AM 时, 则 AO^2 = AM^2 ,
x^2 + y^2 = (13 - x)^2 + y^2 . ②

由①②得 \begin{cases} y = \frac{3}{2}x, \\ x^2 + y^2 = (13 - x)^2 + y^2, \end{cases}

解得 \begin{cases} x = \frac{13}{2}, \\ y = \frac{39}{4}. \end{cases} A(\frac{13}{2}, \frac{39}{4}) .

OA = OM 时, 则 OA^2 = OM^2 , 即 x^2 + y^2 = 169 . ③

由①③得 \begin{cases} y = \frac{3}{2}x, \\ x^2 + y^2 = 169, \end{cases}

解得 \begin{cases} x = 2\sqrt{13}, \\ y = 3\sqrt{13} \end{cases} \begin{cases} x = -2\sqrt{13}, \\ y = -3\sqrt{13}. \end{cases}

舍去不合题意的解, 则 A(2\sqrt{13}, 3\sqrt{13}) .

MA = OM 时, 则 MA^2 = OM^2 , 即 (13 - x)^2 + y^2 = 169 . ④

由①④得 \begin{cases} y = \frac{3}{2}x, \\ (13 - x)^2 + y^2 = 169, \end{cases} 解得 \begin{cases} x = 8, \\ y = 12 \end{cases}

\begin{cases} x = 0, \\ y = 0, \end{cases} 舍去不合题意的解, 则 A(8, 12) .

综上所述, 如果 \triangle AOM 是等腰三角形, 点 A 的坐标是 (\frac{13}{2}, \frac{39}{4}) (2\sqrt{13}, 3\sqrt{13}) (8, 12) .

(2) 存在点 A 使 \triangle OMN \triangle AOB 相似. 点 A 的坐标为 (4, 6) (\frac{13}{2}, \frac{39}{4}) .

\triangle OBA \sim \triangle MON 时, \frac{AB}{NO} = \frac{OB}{MO} , 故 \frac{ON}{OM} = \frac{AB}{OB} = \frac{3}{2} , 则 ON = \frac{3}{2}OM = \frac{39}{2} , 所以 N(0, \frac{39}{2}) .

直线 MN 的解析式为 y = -\frac{3}{2}x + \frac{39}{2} . ⑤

由①⑤得 \begin{cases} y = \frac{3}{2}x, \\ y = -\frac{3}{2}x + \frac{39}{2}, \end{cases} 解得 \begin{cases} x = \frac{13}{2}, \\ y = \frac{39}{4}. \end{cases}

\therefore A(\frac{13}{2}, \frac{39}{4}) .

\triangle OAB \sim \triangle NMO 时, \frac{AB}{MO} = \frac{OB}{NO} , 故 \frac{OM}{ON} = \frac{AB}{OB} , 则 ON = \frac{OB}{AB} \cdot OM = \frac{2}{3} \times 13 = \frac{26}{3} , 所以 N(0, \frac{26}{3}) .

直线 MN 的解析式为 y = -\frac{2}{3}x + \frac{26}{3} . ⑥

由①⑥得 \begin{cases} y = \frac{3}{2}x, \\ y = -\frac{2}{3}x + \frac{26}{3}, \end{cases} 解得 \begin{cases} x = 4, \\ y = 6, \end{cases}

\therefore A(4, 6) .

综上所述, 当点 A 的坐标为 (4, 6) (\frac{13}{2}, \frac{39}{4}) 时, \triangle OMN \triangle AOB 相似.

3. 3.2 或 5 【解析】 \because AB \odot O 的直径, \therefore \angle ACB = 90^\circ . 在 \text{Rt}\triangle ABC 中, AC = 4 , BC = 3 , \therefore AB = \sqrt{4^2 + 3^2} = 5 . \therefore l \parallel AB , \therefore \angle ACP = \angle CAB . \therefore 以点 P, A, C 为顶点的三角形与 \triangle ABC 相似, \therefore \frac{PC}{AB} = \frac{AC}{AC} \frac{AC}{AB} = \frac{PC}{AC} , \therefore \frac{PC}{5} = 1 \frac{4}{5} = \frac{PC}{4} , 解得 PC = 5

3. 2. 综上可知, 若 \triangle ABC \triangle PAC 相似, 则 PC = 3.2 或 5.

4. 1 或 3 或 8 【解析】设 AP = x , 则 PB = 9 - x . \therefore A, C, P 为顶点的三角形与以 B, D, P 为顶点的三角形相似, \angle A = \angle B = 90^\circ , \therefore 分两种情况讨论: ① 当 \frac{AC}{BD} = \frac{AP}{PB} 时, \frac{2}{4} = \frac{x}{9-x} , 解得 x = 3 . ② 当 \frac{AC}{BP} = \frac{AP}{BD} 时, \frac{2}{9-x} = \frac{x}{4} , 解得 x = 1 或 8. \therefore 当以 A, C, P 为顶点的三角形与以 B, D, P 为顶点的三角形相似时, AP 的长为 1 或 3 或 8. 故答案为 1 或 3 或 8.

5. 40 或 5 【解析】设 BF = x , \therefore BF = B'F = x , \therefore FC = BC - BF = 10 - x . \therefore \angle FCB' = \angle BCA , \therefore \frac{CF}{CB} = \frac{CB'}{CA} 时, \triangle CFB' \sim \triangle CBA , 即 \frac{10-x}{8} = \frac{x}{8} , 解得 x = \frac{40}{9} ; 当 \frac{CF}{CA} = \frac{CB'}{CB} = \frac{FB'}{AB} 时, \triangle CFB' \sim \triangle CAB , 即 \frac{10-x}{8} = \frac{x}{8} , 解得 x = 5 . 综上所述, 当 BF = \frac{40}{9} 或 5 时, 以点 B', F, C 为顶点的三角形与 \triangle ABC 相似.

6. ①④ 【解析】 \because 四边形 ABCD 为正方形, \therefore \angle ADC = \angle BCD = 90^\circ , AD = CD . \therefore E, F 分别为 BC, CD 的中点, \therefore DF = EC = 2 . \therefore \triangle ADF \cong \triangle DCE (\text{SAS}) , \therefore \angle AFD = \angle DEC , \angle FAD = \angle EDC . \therefore \angle EDC + \angle DEC = 90^\circ , \therefore \angle EDC + \angle AFD = 90^\circ , \therefore \angle DGF = 90^\circ , 即 DE \perp AF , 故①正确. \therefore AD = 4 , DF = \frac{1}{2}CD = 2 , \therefore AF = \sqrt{4^2 + 2^2} = 2\sqrt{5} . \therefore \frac{1}{2}AD \cdot DF = \frac{1}{2}DG \cdot AF , \therefore DG = \frac{AD \cdot DF}{AF} = \frac{4\sqrt{5}}{5} , 故②错误. \because H AF 的中点, \therefore HD = HF = \frac{1}{2}AF = \sqrt{5} , \therefore \angle HDF = \angle HFD . \because AB \parallel DC , \therefore \angle HDF = \angle HFD = \angle BAG . \therefore AG = \sqrt{AD^2 - DG^2} = \frac{8\sqrt{5}}{5} , AB = 4 , \therefore \frac{AB}{DH} = \frac{4\sqrt{5}}{5} = \frac{AG}{DF} , \therefore \triangle ABG \sim \triangle DHF , 故④正确. \therefore \angle ABG = \angle DHF , 而 AB \neq AG , 则 \angle ABG \angle AGB 不相等, \therefore \angle AGB \neq \angle DHF , \therefore HD BG 不平行, 故③错误. 故答案为①④.

易错警示

本题未明确相似三角形的对应关系, 注意分类讨论, 避免漏解.

Diagram showing a square ABCD with points E, F, G, H defined, illustrating the geometric relationships discussed in the text.
Diagram showing a square ABCD with points E, F, G, H defined, illustrating the geometric relationships discussed in the text.

D12

更多课程添加微信: 1354622