Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

有道精品课

总结帝笔记—初三寒假班第三讲

54

7. 如图, 梯形 ABCD 中, AB \parallel CD . 若 AB=1 , CD=2 , AC=6 , S_{\triangle AOB}=1 . 则 AO= __________
S_{\text{梯形}ABCD}= __________

Diagram of trapezoid ABCD with AB parallel to CD. Diagonals AC and BD intersect at point O. Segments AO and CO are labeled 1 and 2 respectively, and segments BO and DO are labeled 2 and 4 respectively.
Diagram of trapezoid ABCD with AB parallel to CD. Diagonals AC and BD intersect at point O. Segments AO and CO are labeled 1 and 2 respectively, and segments BO and DO are labeled 2 and 4 respectively.

解: \because AB \parallel CD
\therefore \triangle AOB \sim \triangle COD
\frac{AO}{CO} = \frac{AB}{CD} . \because AB=1 , CD=2 , AC=6
\therefore \frac{AO}{CO} = \frac{1}{2} \Rightarrow CO = 2AO

\because AC = AO + CO = 3AO \Rightarrow 3AO = 6 . AO = 2

\because \frac{S_{\triangle AOB}}{S_{\triangle COD}} = \left(\frac{AB}{CD}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} = \frac{1}{S_{\triangle COD}}

\therefore S_{\triangle COD} = 4

\because S_{\triangle AOB} S_{\triangle BOC} (不同底, 同高)
且底之比为 OA:OC = 1:2

\therefore S_{\triangle AOB} : S_{\triangle BOC} = 1:2 . \because S_{\triangle AOB}=1

\therefore S_{\triangle BOC} = 2 . 同理: S_{\triangle AOD} S_{\triangle COD} (同底、同高)
且底之比为 OA:OC = 1:2 . \therefore S_{\triangle AOD} : S_{\triangle COD} = 1:2

(微信公众号: 实用视界) 免费分享