Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

\text{所以 } x_1 + x_2 = \frac{8k^2}{3+4k^2}, \quad x_1x_2 = \frac{4k^2-12}{3+4k^2},

(\text{法一}) |AF_2| = \sqrt{(x_1-1)^2 + y_1^2} = \sqrt{1+k^2}|x_1-1|, \quad |F_2B| = \sqrt{(x_2-1)^2 + y_2^2} = \sqrt{1+k^2}|x_2-1|,

|AF_2| \cdot |F_2B| = (1+k^2)|x_1x_2 - (x_1+x_2) + 1| = (1+k^2) \left| \frac{4k^2-12}{3+4k^2} - \frac{8k^2}{3+4k^2} + 1 \right| = (1+k^2) \left| \frac{9}{3+4k^2} \right| = (1+k^2) \frac{9}{3+4k^2} = \frac{9}{4} \left( 1 + \frac{1}{3+4k^2} \right),

k^2=0 时, 取最大值为 3, 所以 |AF_2| \cdot |F_2B| 的取值范围 \left[\frac{9}{4}, 3\right] .

又当 k 不存在, 即 AB \perp x 轴时, |AF_2| \cdot |F_2B| 取值为 \frac{9}{4} .

所以 |AF_2| \cdot |F_2B| 的取值范围 \left[\frac{9}{4}, 3\right] .

(\text{法二}) |AF_2| \cdot |F_2B| = \overrightarrow{AF_2} \cdot \overrightarrow{F_2B} = -\overrightarrow{F_2A} \cdot \overrightarrow{F_2B} = -(x_1-1)(x_2-1) - y_1y_2

= -(x_1-1)(x_2-1) - k^2(x_1-1)(x_2-1) = -(1+k^2)[x_1x_2 - (x_1+x_2) + 1] = -(1+k^2) \left( \frac{4k^2-12}{3+4k^2} - \frac{8k^2}{3+4k^2} + 1 \right) = (1+k^2) \frac{9}{3+4k^2} = \frac{9}{4} \left( 1 + \frac{1}{3+4k^2} \right),

k^2=0 时, 取最大值为 3, 所以 |AF_2| \cdot |F_2B| 的取值范围 \left[\frac{9}{4}, 3\right] .

又当 k 不存在, 即 AB \perp x 轴时, |AF_2| \cdot |F_2B| 取值为 \frac{9}{4} .

所以 |AF_2| \cdot |F_2B| 的取值范围 \left[\frac{9}{4}, 3\right] .

例26. (2022\cdot \text{全国}\cdot \text{南京外国语学校模拟预测}) \text{已知抛物线 } C: x^2 = 4y , F \text{为其焦点, 过 } F \text{的直线 } l \text{与 } C \text{交于不同的两点 } A \text{、} B .

(1) \text{若直线 } l \text{斜率为 3, 求 } |AB| ;

(2) \text{如图, } C \text{在点 } A \text{处的切线与在点 } B \text{处的切线交于点 } P , \text{连接 } PF , \text{证明: } |PF|^2 = |AF| \cdot |BF| .

【\text{解析}】(1) \text{由抛物线 } C: x^2 = 4y , \text{得 } F(0, 1) ,

\text{若直线 } l \text{的斜率为 3, 则直线 } l \text{的方程为 } y = 3x + 1 .

\text{设 } A(x_1, y_1) , B(x_2, y_2) ,

\text{由 } \begin{cases} y = 3x + 1 \\ x^2 = 4y \end{cases} \text{ 消去 } y \text{ 得 } x^2 - 12x - 4 = 0, \text{ 所以 } \Delta > 0, x_1 + x_2 = 12,

\text{所以 } |AB| = |AF| + |FB| = y_1 + 1 + y_2 + 1 = 3(x_1 + x_2) + 4 = 40.

(2) \text{证明: 由题可知, 直线 } l \text{的斜率存在, 设直线 } l \text{的方程为 } y = kx + 1 , A(x_1, y_1) , B(x_2, y_2) ,

\text{抛物线方程为 } x^2 = 4y, \text{ 即 } y = \frac{x^2}{4}, y' = \frac{x}{2},

\text{所以以 } A \text{、} B \text{为切点的切线方程分别为 } x_1x = 2y + 2y_1 , x_2x = 2y + 2y_2 .

\text{由 } \begin{cases} y = kx + 1 \\ x^2 = 4y \end{cases} \text{ 消去 } y \text{ 得 } x^2 - 4kx - 4 = 0, \text{ 所以 } \Delta > 0, x_1 + x_2 = 4k, x_1x_2 = -4.

\text{这两条切线的斜率分别为 } k_1 = \frac{x_1}{2} , k_2 = \frac{x_2}{2} .

\text{由 } k_1k_2 = \frac{x_1x_2}{4} = \frac{-4}{4} = -1, \text{ 故 } PA \perp BP.

\text{设 } P(x_0, y_0), \text{ 则由 } \begin{cases} x_1x = 2y + 2y_1 \\ x_2x = 2y + 2y_2 \end{cases} \text{ 可得 } x_0 = \frac{2(y_1 - y_2)}{x_1 - x_2} = 2k, y_0 = \frac{1}{2}x_1x_0 - y_1 = kx_1 - y_1 = -1,

\text{当 } k=0 \text{ 时, 则 } x_0=0 , \text{可得 } AB \perp PF ;

\text{当 } k \neq 0 \text{ 时, 则 } x_0 \neq 0, k_{AB} = \frac{x_0}{2}, k_{PF} = \frac{-2}{x_0}, \text{ 所以 } k_{AB} \cdot k_{PF} = \frac{-2}{x_0} \cdot \frac{x_0}{2} = -1,

Diagram showing a parabola C: x^2 = 4y, with focus F. A line l passes through F and intersects the parabola at points A and B. The tangent lines at A and B intersect at point P. The origin O is also marked.
Diagram showing a parabola C: x^2 = 4y, with focus F. A line l passes through F and intersects the parabola at points A and B. The tangent lines at A and B intersect at point P. The origin O is also marked.