Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

19. 解: (1) 取 EF 的中点 G , 连接 DG , CG

\therefore 四边形 ADE_1F_1 BCE_2F_2 都是菱形, \angle DE_1F_1 = \angle CE_2F_2 = 60^\circ

\therefore DG \perp EF .................................................... 1

BC = 2

\therefore DG = CG = \sqrt{3} .................................................... 2

CD = AB = \sqrt{6}

即有 DG^2 + CG^2 = CD^2 , DG \perp CG .................................................... 3

CG \cap EF = G , CG, EF \subset 平面 BCEF

\therefore DG \perp 平面 BCEF .................................................... 5

DG \subset 平面 AFED

\therefore 平面 AFED \perp 平面 BCEF .................................................... 6

(2) 连接 DF , DB

由 (1) 知 DG \perp 平面 BCEF , 同理 CG \perp 平面 AFED .................................................... 7

S_{\text{菱形}BCEF} = 2 \times \sqrt{3} = 2\sqrt{3} , S_{\triangle ADF} = \frac{1}{2} \times 2 \times \sqrt{3} = \sqrt{3} .................................................... 9

\begin{aligned}V &= V_{D-BCEF} + V_{D-ABF} = V_{D-BCEF} + V_{B-ADF} = \frac{1}{3} S_{\text{菱形}BCEF} \cdot DG + \frac{1}{3} S_{\triangle ADF} \cdot CG \quad \text{.................................................... 12} \\&= \frac{1}{3} \times 2\sqrt{3} \times \sqrt{3} + \frac{1}{3} \times \sqrt{3} \times \sqrt{3} \\&= 3\end{aligned}

20. \text{解: (1) } f'(x) = \frac{-mx^2 + 2(m-1)x + 4}{e^x} = \frac{-(mx+2)(x-2)}{e^x} \quad (m>0) \quad \text{.................................................... 1}

f'(x)=0 , 解得 x=-\frac{2}{m} x=2 , 且 -\frac{2}{m} < 2 .................................................... 2

x \in (-\infty, -\frac{2}{m}] 时, f'(x) \le 0 , 当 x \in (-\frac{2}{m}, 2) 时, f'(x) > 0 ,

x \in [2, +\infty) 时, f'(x) \le 0 .................................................... 4

f(x) 的单调增区间为 (-\frac{2}{m}, 2) , 单调减区间为 (-\infty, -\frac{2}{m}] , [2, +\infty) .................................................... 5

(2) 由 (1) 知, 当 m>0 , x \in [1, 2] 时, f'(x) > 0 恒成立 .................................................... 6

Diagram of a geometric figure, likely a prism or pyramid, showing points A, B, C, D, E, F, and G. G is the midpoint of EF. D is connected to A, B, C, E, F. E is connected to D, F. F is connected to D, E, C. B is connected to C, F. A is connected to D, F. The figure illustrates the spatial relationships described in the problem.
Diagram of a geometric figure, likely a prism or pyramid, showing points A, B, C, D, E, F, and G. G is the midpoint of EF. D is connected to A, B, C, E, F. E is connected to D, F. F is connected to D, E, C. B is connected to C, F. A is connected to D, F. The figure illustrates the spatial relationships described in the problem.

所以 f(x) [1, 2] 上为增函数,

\text{即 } f(x)_{\max} = f(2) = \frac{4m+2}{e^2}, \quad f(x)_{\min} = f(1) = \frac{m}{e} \quad \text{.................................................... 8}

f(x_1) - f(x_2) \text{ 的最大值为 } g(m) = f(x)_{\max} - f(x)_{\min} = \frac{(4-e)m+2}{e^2} \quad \text{.................................................... 9}

\therefore \frac{4}{e^2} \ge [f(x_1) - f(x_2)] 恒成立 .................................................... 10

\therefore \frac{4}{e^2} \ge \frac{(4-e)m+2}{e^2},

\text{即 } m \le \frac{2}{4-e} \quad \text{.................................................... 11}

\text{又 } m > 0 \quad \therefore m \in \left(0, \frac{2}{4-e}\right]

\text{故 } m \text{ 的取值范围} \left(0, \frac{2}{4-e}\right] \quad \text{.................................................... 12}

21. \text{解: (1) } \because e = \frac{c}{a} = \frac{\sqrt{2}}{2}, \quad \therefore c^2 = \frac{1}{2}a^2, \quad \therefore b^2 = a^2 - c^2 = \frac{1}{2}a^2. \quad \text{.................................................... 2}

\therefore 椭圆的中心 O 到直线 x+y-2b=0 的距离为 5\sqrt{2} ,

\therefore \frac{|-2b|}{\sqrt{2}} = 5\sqrt{2}, \quad \therefore b = 5 \quad \therefore b^2 = 25, \quad a^2 = 2b^2 = 50.

\therefore \text{椭圆 } C \text{ 的方程为 } \frac{x^2}{50} + \frac{y^2}{25} = 1. \quad \text{.................................................... 4}

(2) 由 (1) 可知 F(5, 0) , 由题可知直线 AB 的方程为 y = \sqrt{2}(x-5) , 与椭圆 C

\text{的方程联立} \begin{cases} y = \sqrt{2}(x-5) \\ \frac{x^2}{50} + \frac{y^2}{25} = 1 \end{cases}, \quad \text{消去 } y \text{ 得} \quad x^2 - 8x + 10 = 0

A(x_1, y_1) , B(x_2, y_2) , 则有 x_1 + x_2 = 8 , x_1 x_2 = 10 . .................................................... 6

Q(x, y) , 由 \overrightarrow{OQ} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB} (x, y) = \lambda(x_1, y_1) + \mu(x_2, y_2) = (\lambda x_1 + \mu x_2, \lambda y_1 + \mu y_2) ,

\therefore \begin{cases} x = \lambda x_1 + \mu x_2 \\ y = \lambda y_1 + \mu y_2 \end{cases} \quad \text{.................................................... 7}

2