View scores and output across OCR models spanning many document categories.
Want to run these evals on your own documents?
有道精品课
总结帝笔记—初三寒假班第三讲
50
\because DE \parallel BC \quad \frac{AN}{AM} = \frac{AD}{AB} = \frac{DN}{BM}
\triangle ADN \sim \triangle ABM \quad \triangle ANE \sim \triangle AMC \quad \frac{AN}{AM} = \frac{AE}{AC} = \frac{NE}{MC}
\because AN = 2NM
\therefore \frac{AN}{AM} = \frac{2}{3} \quad \text{故两组相似的相似比}
均为 \frac{2}{3}
\therefore \frac{S_{\triangle ADN}}{S_{\triangle ABM}} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}; \quad \frac{S_{\triangle ANE}}{S_{\triangle AMC}} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}
\text{设 } S_{\triangle ADN} = 4k \quad S_{\triangle ANE} = 4t
\therefore S_{\triangle ABM} = 9k \quad S_{\triangle AMC} = 9t
\therefore S_{\triangle ABC} = S_{\triangle ABM} + S_{\triangle AMC} = 9k + 9t
\because S_{\triangle DMN} = \frac{1}{2} S_{\triangle ADN} \quad (\text{等高不等底})
S_{\triangle MNE} = \frac{1}{2} S_{\triangle ANE} \quad \text{同理}
\therefore S_{\triangle DMN} = 2k; \quad S_{\triangle MNE} = 2t
\therefore S_{\triangle DME} = S_{\triangle DMN} + S_{\triangle MNE} = 2k + 2t
\therefore \frac{S_{\triangle DME}}{S_{\triangle ABC}} = \frac{2k+2t}{9k+9t} = \frac{2(k+t)}{9(k+t)} = \frac{2}{9}
口嗨不?
6. 在四边形ABCD中, AD \parallel BC , AB与CD不平行 根据图中数据, 若BA、CD延长后交于点M, 则 \triangle MBC 的周长为____.
(微信公众号: 实用视界) 免费分享