Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

解法4: F(x) = \frac{g(x)}{f(x)} = \frac{\sin(2x + \frac{\pi}{4})}{\sin(2x - \frac{\pi}{4})} , 定义域为 \left\{x | x \neq \frac{\pi}{8} + \frac{k\pi}{2}, k \in \mathbb{Z}\right\}

F'(x) = \frac{2\cos(2x + \frac{\pi}{4})\sin(2x - \frac{\pi}{4}) - 2\cos(2x - \frac{\pi}{4})\sin(2x + \frac{\pi}{4})}{\sin^2(2x - \frac{\pi}{4})} = \frac{-2}{\sin^2(2x - \frac{\pi}{4})} < 0

\therefore F(x) 的单调递减区间为 (-\frac{3\pi}{8} + \frac{k\pi}{2}, \frac{\pi}{8} + \frac{k\pi}{2}) , k \in \mathbb{Z} , 无递增区间.

评分标准:

(1) g(x) 表达式正确2分,

(2) 有化简结果正确2分: -\tan(2x + \frac{\pi}{4}) , \frac{1}{\tan(2x - \frac{\pi}{4})} , 1 + \frac{2}{\tan 2x - 1} , \frac{-2}{\sin^2(2x - \frac{\pi}{4})} < 0

(3) 单调区间正确1分。

Diagram of a prism or pyramid structure with vertices A, B, C, D, A1, B1, C1, D1, and E. E is a point on the base ABCD.
Diagram of a prism or pyramid structure with vertices A, B, C, D, A1, B1, C1, D1, and E. E is a point on the base ABCD.

注: 1.有正确的体积公式, h没算对, 这2分也给!

2.没有写出以上的任何一个踩分点, 去证明 A_1E 垂直与平面 ABCD 的, 给2分

18. (本小题满分12分)

(1) 如图, 取AB中点O, 连接 OA_1, OB_1 .

\therefore AA_1 = AB_1 = B_1B = 1, AB = 2

\therefore OA = OB = AA_1 = AB_1 = 1

\therefore B_1O \parallel AA_1 , 四边形 AA_1B_1O 为平行四边形

\therefore AA_1 = A_1O = AO , 即 \triangle AA_1O 为等边三角形

V_{ABCD - A_1B_1C_1D_1} = \frac{7\sqrt{3}}{16} = \frac{1}{3} \left( S_1 + S_2 + \sqrt{S_1 S_2} \right) \cdot h

S_{\text{下}} = (1+2) \times 1 \times \frac{1}{2} = \frac{3}{2}

有体积公式, 给2分

18.解: (1) 连接 AD_1 , 因为 AE \parallel D_1C , 所以 A, E, C_1, D_1 四点共面,

因为 C_1E \parallel 平面 ADD_1A_1 , AD_1 是过 C_1E 的平面 AEC_1D_1 与平面 ADD_1A_1 的交线

由线面平行的性质定理, 知 AD_1 \parallel C_1E

所以四边形 AEC_1D_1 为平行四边形 2分

所以 AE = D_1C_1 = \frac{1}{2} DC = \frac{1}{2}

AA_1 = 1 ,

易得 \angle A_1AE = 60^\circ , 又 AA_1 = 1 ,

所以 A_1E = \sqrt{AA_1^2 + AE^2 - 2AA_1 \cdot AE \cdot \cos 60^\circ} = \frac{\sqrt{3}}{2} 2分, 同时可得 A_1E \perp AB .

上下底面积分别为 S_1, S_2 , 易求得 S_1 = \frac{3}{4}, S_2 = \frac{3}{2}

所以 V = \frac{7\sqrt{3}}{16} = \frac{h}{3} (S_1 + \sqrt{S_1 S_2} + S_2) = \frac{h}{3} (\frac{3}{4} + \frac{3}{8} + \frac{3}{2}) = \frac{7h}{8} , 从而有 h = \frac{\sqrt{3}}{2} 2分

所以 h = A_1E

(2) 解法1: 由 (1) 知平面 AA_1B_1B \perp 平面 ABCD

BC \perp AB , 所以 BC \perp 平面 AA_1B_1B

所以平面 BCC_1B_1 \perp 平面 AA_1B_1B 2分

过E作 EH \perp BB_1 于H, 则 EH \perp 平面 BCC_1B_1

从而 \angle EC_1H 为直线 C_1E 与平面 BCC_1B_1 所成角 2分

EH = BE \sin 60^\circ = \frac{3\sqrt{3}}{4}

C_1E^2 = C_1B_1^2 + B_1E^2 = C_1B_1^2 + BE^2 + BB_1^2 - 2 \cdot BB_1 \cdot BE \cdot \cos 60^\circ = 2, \text{ 即 } C_1E = \sqrt{2}

\text{所以 } \sin \angle EC_1H = \frac{EH}{C_1E} = \frac{3\sqrt{6}}{8}. \quad 2\text{分}

Diagram showing the prism/pyramid structure with point E on the base and point H on BB1, illustrating the construction for finding the height h.
Diagram showing the prism/pyramid structure with point E on the base and point H on BB1, illustrating the construction for finding the height h.