Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

56 MIGUEL MOREIRA

Remark 9.2. We point out that one can also define analogues of these operators in the quasi-parabolic descendent algebras \mathbb{D}_{\alpha,\bullet}^{\mathrm{qpar}} ; recall that this is a supercommutative algebras generated by symbols \mathrm{ch}_k(\gamma) for \gamma\in H^*(C) and \mathrm{ch}_k(e_j) for 0\le j\le l+1 , modulo certain simple relations; alternatively, it is generated by \mathrm{ch}_k^H(\gamma), \mathrm{ch}_k^H(e_j) . One defines \mathsf{L}_n^{\mathrm{qpar}}:\mathbb{D}_{\alpha,\bullet}^{\mathrm{qpar}}\rightarrow\mathbb{D}_{\alpha,\bullet}^{\mathrm{qpar}} by \mathsf{L}_n^{\mathrm{qpar}}=\mathsf{R}_n^{\mathrm{qpar}}+\mathsf{T}_n^{\mathrm{qpar}} where \mathsf{R}_n^{\mathrm{qpar}} is defined exactly in the same way as in the parabolic case, and \mathsf{T}_n is

\mathsf{T}_n^{\mathrm{qpar}}=\sum_{a+b=n}a!b!\left((1-g)\mathrm{ch}_a(\mathrm{pt})\mathrm{ch}_b(\mathrm{pt})+\sum_{j=0}^l\mathrm{ch}_a(e_j)\mathrm{ch}_b(e_{j+1}-e_j)\right).

In particular, the Virasoro constraints do not depend on a choice of weights within a fixed chamber.

The main result of this section are the Virasoro constraints for moduli spaces of parabolic bundles:

Theorem 9.3. Let \alpha=(r,d,f_\bullet,c)\in C(I) . For every D\in\mathbb{D}^{\mathrm{par}} we have

\int_{[M_\alpha]}\mathsf{L}_{\mathrm{wt}_0}(D)=0.

These generalize the Virasoro constraints for moduli spaces of stable bundles shown in [BLM]. For the proof, we will need compatibility statements between the Virasoro constraints and the structures that we have discussed earlier in the paper: wall-crossing, flag bundles, and Hecke operators. We develop these compatibilities first, and then give the proof in Section 9.5.

9.1. Primary states and wall-crossing compatibility.

Compatibility with wall-crossing is already the key ingredient in [BLM]. To state it, let us introduce the Lie subalgebra of primary states.

Definition 9.4. The space of primary states of weight i on \mathbf{V}_{\mathrm{tr}}^{\mathrm{par}} is

P_i=\left\{v\in\mathbf{V}_{\mathrm{tr}}^{\mathrm{par}}:L_0(v)=iv\text{ and }L_n(v)=0\text{ for }n>0\right\}.

The space of primary states on the Lie algebra \tilde{\mathbf{V}}_{\mathrm{tr}}^{\mathrm{par}} is

\tilde{P}_0=P_1/T(P_0)\subseteq\tilde{\mathbf{V}}_{\mathrm{tr}}^{\mathrm{par}}.

By [LM, Corollary 5.7], a class u\in\tilde{\mathbf{V}}_{\mathrm{tr}}^{\mathrm{par}} (of non-trivial topological type) is a primary state if and only if L_{\mathrm{wt}_0}(u)=0 , where

L_{\mathrm{wt}_0}=\sum_{n\ge-1}\frac{(-1)^n}{(n+1)!}L_{-1}^{n+1}\circ L_n:\tilde{\mathbf{V}}_{\mathrm{tr}}^{\mathrm{par}}\rightarrow\mathbf{V}_{\mathrm{tr}}^{\mathrm{par}}

is the dual of L_{\mathrm{wt}_0} . 17 In particular, the moduli space M_\alpha satisfies the Virasoro constraints (i.e. Theorem 9.3 holds) if and only if [M_\alpha]\in\tilde{P}_0 is a primary state.

We recall the reader that \mathbf{V}_{\mathrm{tr}}^{\mathrm{par}} is a lattice vertex algebra (cf. Proposition 3.1). When the symmetrized Euler pairing \chi_{\mathrm{tr}}^{\mathrm{sym}} is non-degenerate, this vertex algebra

17 When \mathbf{V}_{\mathrm{tr}}^{\mathrm{par}} admits a conformal element \omega , L_{\mathrm{wt}_0} is a canonical lift of the operator [-,\omega] , see [BLM, Proposition 3.13, Lemma 3.15].