Talk to Sales

Benchmarks

View scores and output across OCR models spanning many document categories.

Want to run these evals on your own documents?

Talk to Sales
Page 1

3. To define the associator, notice that for V,W,U∈\mathrm{Rep}(A) , both the spaces (V\overline{\otimes}W)\overline{\otimes}U and V\overline{\otimes}(W\overline{\otimes}U) are given by the retract of the idempotent

V\otimes W\otimes U\longrightarrow V\otimes W\otimes U, v\otimes w\otimes u\longmapsto 1_{(1)}.v\otimes 1_{(2)}.w\otimes 1_{(3)}.u,

which can be verified using ( Axiom 1 ). We then define the associator a_{V,W,U} as the canonical map between the two retracts. One can check that a_{V,W,U} is an A -module map, and satisfies the pentagon equation.

4. Given V\in\mathrm{Rep}(A) , we set the left unitor l_V:A^l\overline{\otimes}V\longrightarrow V to be the restriction of the map

A^l\otimes V\longrightarrow V, x\otimes v\longmapsto x.v

on A^l\overline{\otimes}V ; we set the right unitor r_V:V\overline{\otimes}A^l\longrightarrow V to be the restriction of the map

V\otimes A^l\longrightarrow V, v\otimes y\longmapsto\varepsilon^{rr}(y).v

on V\overline{\otimes}A^l . One can check that l_V and r_V are indeed invertible A -module maps, and satisfy the triangle equations.

5. The left dual V^L of an object V\in\mathrm{Rep}(A) is given by the dual vector space V^*:=\mathrm{Hom}(V,k) endowed with the A -action

x.\omega=\omega(S(x).{-}), \forall\omega\in V^*, x\in A.

Similarly, the right dual V^R of V is given by V^* endowed with A -action

x.\omega=\omega(S^{-1}(x).{-}), \forall\omega\in V^*, x\in A.

Secondly, note that \mathrm{Rep}(A) is clearly a finite k -linear category, with the tensor product \overline{\otimes} being bi- k -linear. This concludes our construction of \mathrm{Rep}(A) .

1.20 Example. We illustrate the above construction of \mathrm{Rep}(A) when A is the weak Hopf algebra B\otimes B^{\mathrm{op}} defined in Example 1.17. Since a left A -module is precisely a B - B -bimodule, \mathrm{Rep}(A) is equivalent to \mathrm{BiMod}(B|B) as categories. It remains to find the monoidal structure on \mathrm{Rep}(A) . Given left A -modules V and W , which we identify as B - B -bimodules, the underlying vector space of V\overline{\otimes}W is the retract of the idempotent

V\otimes W\longrightarrow V\otimes W, v\otimes w\longmapsto v.p^{(1)}\otimes p^{(2)}.w.

The action of a\otimes b\in B\otimes B^{\mathrm{op}} on V\overline{\otimes}W is given by the restriction of the map

V\otimes W\longrightarrow V\otimes W, v\otimes w\longmapsto a.v.p^{(1)}\otimes p^{(2)}.w.b

on V\overline{\otimes}W . Using Corollary 1.5, it can be shown that the B - B -bimodule V\overline{\otimes}W is precisely V\otimes_B W .

To find the tensor unit of \mathrm{Rep}(B\otimes B^{\mathrm{op}}) , one first computes

\varepsilon^{lr}:B\otimes B^{\mathrm{op}}\longrightarrow B\otimes B^{\mathrm{op}}, a\otimes b\longmapsto ab\otimes 1; \varepsilon^{rr}:B\otimes B^{\mathrm{op}}\longrightarrow B\otimes B^{\mathrm{op}}, a\otimes b\longmapsto 1\otimes ab.

12